

Sesto Fiorentino, 4 Marzo 2020

Determinazione dell'efficienza di filtrazione di mascherine

La prova consiste nella generazione di un aerosol liquido e nella determinazione della distribuzione dimensionale dell'aerosol con e senza l'applicazione della mascherina filtrante alla bocchetta di uscita del generatore di aerosol. Le prove sono state effettuate su mascherine di due tipi:

Mascherina di riferimento

Mascherina da verificare

Le prove di filtrazione sono state effettuate da entrambi i lati della mascherina per verificare l'efficacia della protezione da e per chi la indossa.

Strumentazione usata

Generatore di aerosol Beurer H21 caricato con acqua deionizzata. Contatore ottico di particelle: TSI OPS 3330

Risultati ottenuti

L' efficienza di filtrazione percentuale ($E_{\rm filtr\,\%}$) è stata calcolata per ciascun intervallo dimensionale dell'aerosol misurato dal contatore ottico di particelle utilizzando la seguente equazione

 $E_{filtr.}\% = 100* C_f/C_e$

Dove:

C_e è numero di particelle emesse dal generatore di aerosol in un determinato intervallo dimensionale.

C_f è il numero di particelle misurato dopo l'applicazione del filtro nello stesso intervallo dimensionale.

E_{filtr.}% può assumere valori da 0 a 100 che significano rispettivamente, il passaggio di tutte o nessuna delle particelle di aerosol di una determinata classe dimensionale attraverso una membrana filtrante.

In tabella sono riportate le efficienze di filtrazione per i due tipi di mascherina per entrambi i versi. I dati riportati si riferiscono alla media calcolata su due prove, ognuna delle quali rappresenta un dato medio di 60 misure.

Diametro particolato	Mascherina di riferimento		Mascherina da verificare	
	Interno-Esterno	Esterno-Interno	Interno-Esterno	Esterno-interno
	E _{filtr.} %	E _{filtr.} %	E _{filtr.} %	E _{filtr.} %
<0.3 μm	98.0	96.9	98.2	98.3
0.5-1 μm	97.1	95.8	97.5	97.6
1-2 μm	99.7	99.5	99.7	99.7
2-5 μm	100	100	100	100
5-10 μm	100	100	100	100
>10 μm	100	100	100	100

I dati mostrano che per entrambi i tipi di mascherina si ha una elevatissima efficienza di filtrazione e che, come atteso, tale efficienza aumenta all'aumentare della classe dimensionale. Anche per le classi micrometriche o sub-micrometriche l'efficienza di filtrazione è molto elevata (sempre >95%).

I due tipi di mascherina presentano efficienze equivalenti nella direzione di flusso interno-esterno. Nella direzione di flusso esterno-interno la mascherina da verificare risulta lievemente più efficiente (ma la differenza è statisticamente non significativa) della mascherina di riferimento.

In fede,

Silvie Becorphi